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We present a new variant of Van Leer’s construction of upwind finite
volume schemes for hyperbolic systems of conservation laws, Fluxes
are computed with second-order accuracy using an interpolation rather
than a slope reconstruction. A correction of the interpolated values is
necessary and performed globally on each cell by a conservation argu-
ment. It can be used on a rectangular or triangles based dual grid to
obtain a genuinely multidimensional scheme. One of our main concerns
in this construction, is to prove that the second-order reconstruction,
combined with a Boltlzmann solver, gives nonnegative values of the
pressure and density for gas dynamics, even on an unstructured mesh.
This allows us to derive a rigorous CFL condition. Thus our approach
is very robust.  © 1994 Academic Peess. inc.

I, INTRODUCTION

In this paper, we present a new upwind finite volume
scheme for solving multidimensional hyperbolic systems of
conscrvalion laws on unstructured grids. It is a variant of
Van Leer's idea [ 18] which has been leading much of the
recent research in this area, see, for instance, Collela 2],
Durlofsky, Engquist, and Osher [6], Sanders and Wicser
[ 157, and the references therein. Van Leer’s method consists
in itroducing o limitation step in the caleulation ol the
gradients necessary for a second-order aceurile evaluation
of the fluxes in the finite volume formulation, This limitation
turns out to be necessary to avoid oscillutions in the numeri-
cal results, as it is well understood flor scalar conservation
laws in 1D because of “TVD™ properties (Harten [9]). But
for multidimensional systems, the limitation of gradients is
very unnatural and, for instance, direction by direction
limitations are not satisfactory,

The main ideas we propose here are [irst to avoid the
gradient constructions, just replacing them by an interpola-
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tion. This leads us to represent the solution, no longer as a
piccewise linear function by cell, bul by a piccewise constant
on subcells function (p.cs. function in short). This inter-
polation is natural when dealing with a rectangular mesh or
a triangle-based dual mesh and this last case will be con-
sidered throughout this paper. Second, the limitation step is
performed by a conservation argument on each cell for this
p.cs. function. It is global on the cell and does not require
predetermined directions.

Another motivation for the precise construction we
propose is gas dynamics equations. Then, we are able to
prove that the computed densities and pressures remain
nonnegative, which leads us to derive a rigorous CFL
condition on the time step. This kind ol nonlinear stability
condition appears to be useful for several types of computa-
tions: interaction of strong shocks as in the blast waves
problem, low density, and pressure zone behind a body ina’
hypersonic regime {sce also the 1D test problems proposed
by Einfeldt, Munz, Roe, and Sjogreen [7]), multicompo-
nent reacting gases {sce Fezoui and Larrouturou [8]),
adaptive mesh technics which lead to very distorted tri-
angles. This nonnegativity properly requircs us to use
basic upwinding algorithm that preserves nonnegativity at
least for one-dimensional problems. Thus we choose Lo usc
the Boltzmann soiver (Deshpande [4], Perthame [13],
Pullin [ 14]) because it reducces the nonlinear gas dynamics
equations to a linear kinetic equation, thus allowing a
positivity analysis. The counterpart to the robustness of this
solver, is that its Nlux splitting form makes it very dissipative
on stationary contact discontinuities (slip lines along a body
in particular). This is reported in Coquel and Liu [3], for
instance.

For ease of presentation, we will now restrict ourselves to
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solving the gas dynamics equations on a dual grid. In Sec-
tion I below we recall these equations, make more precise
the construction of this grid, and introduce the main nota-
tions. Then, in Section IT we present our interpoiation algo-
rithm, the limitation by conservation, and prove that it is
second-order accurate. Finally, in Section ITI we show that,
together with this algorithm, the kinetic solvers preserves
the nonnegativity of density and pressure. Numerical results
are presented in Section TV,

2. DESCRIPTION OF THE SCHEME ON AN
UNSTRUCTURED GRID

In this section, we give a general presentation of the finite
volume scheme and we leave for the next section the details
of the interpolation and limitation algorithm. Note that it is
a multidimensional extension of a 1D algerithm proposed
in [13], where both second-order accuracy and non-
negativity of densities and pressures were obtained. For the
sake of simplicity we restrict ourselves to the case of gas
dynamics and to a single example of grid: the dual one in
two dimensions.

2.1. Gas Dynamics and Dual Grid

We now consider the system of gas dynamics equations in
two space dimensions

3, U+div, FU)=0, xeR%} 20, (1)
where the unknowns U(z, x) are given by
U=(pspul=pu25E)= (2)
and the flux F{U)=(F,(U), F5(U)), with
Fi(U}=(pu,, pui+ p, puyiuy, Euy), 3)
Fy(U)= (puy, pu,us, pus + p, Eus),
E=splul®*+ps, p=pT=(y—1)pe, l<y<2
(4)

The construction of the numerical algorithm, the limitation
procedure, and the accuracy analysis below can be applied
to a large extent to general systems. But our nonnegativity
analysis is restricted to gas dynamics and thus we prefer to
deal directly with this system.

Next let us describe the grid we are going to use for our
finite volume scheme. It has already been used in gas
dynamics by Angrand, Dervieux, Boulard, Périaux, and
Vijayasundaram [1], Rostand and Stoufllet [ 15]. The basis
is a given triangulation with vertices positioned at points
(Xi)l sisir
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The cell C; is the control volume delimited in joining the
mass centers of all the triangies surrounding X as shown in
Fig. 1. These mass centers will be denoted (N, N2, .., N),
where A = A({) is the number of triangles surrounding X,
and by convention N/ *' = N, At this level, we would like
to point out that the actual implementation of the scheme
does not require us to store the points N7, but only the ver-
tices for each triangle, the label of the two triangles on both
sides of each edge of each triangle, and the label of the two
extremities of the edge.

Finally, we set {see Fig. 1)

|C;| = area(C,),
Efr V= (N7, NT), (5)
|[EX 12 = |N* = N7,

and n*™ "2 (but we will skip the dependence upon i, except

if necessary) denotes the outer unit normal to the edge

E** ' joining two consecutive vertices (N¥, N**") of the
) -] g 1 ¥

cell C,.

2.2. Finite Volume Scheme
We are now in a position to describe our finite volume
scheme for (1),

A(i)
|ICA (U Uy + 4t ¥ E*H12 g2+ =0, (6)

=1

The principle of finite volumes is that in this formula, U7
represents the average of U(t, x) at time t =n At (the time

FI1G. 1. The control volume used in the finite volume algorithm. Based
on a given triangulation X, the cell C, is delimited by the polygon with
vertices V7, the mass centers of the corresponding triangles.
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step) in the cell C,. This will be fundamental for our limita-
tion step. The exact flux, deduced from (1) by Green’s
formula,

1
|E:x+ l,l2|

f F(U(t,, x)) -1+ "2 dx, (7)
E:-&-Ul

is replaced, for second order accuracy, by a simple inter-
pelation
¢:+ 172 _ %[F(n'u+ 1,"2’ U,’a U;(,[))

+ F(H?H' 1.:'2, U?+ I, U;[:'J: 1))], (8)
where U? represents a second-order accurate interpolation
of [/ at the point N¥, knowing the values U7. This inter-
polated value has, however, to be limited within the cell C;
as explained in the next section, and U7, is the same inter-
polated value at N7 but limited in the cell C;{x} neighboring
C, along the edge E7. Finally, F(n, U, V) is the normal flux
computed by an upwind selver F which should satisfy as
usual F(n, U, U)= F(U)-n. In Section ITI, we will describe
the kinetic solver and its properties,

In the next section we will describe more precisely the
interpolation and limitations in cell algorithms for the dual-
type grid. Let us, however, point out that the full algorithm
could be performed as well on a rectangular grid. In this
case, we have observed, on numerical tests, better results
using two “Riemann probiems” on each edge, as in (8),
rather than one in the middle of the edges. Of course, the
drawback of our procedure, on rectangular or triangles
based dual grids, is that these two “Riemann problems”
could be too expensive. This is one more motivation for
using a cheap approximate Riemann solver as the kinetic
one. Also we have limited our description to the first order
in time algorithm. But second-order accuracy can be
achieved as usual using a Runge—Kutta discretization of the
underlying ODE (see Osher and Shu [127]), while keeping
the nonnegativity properties of the complete algorithm (see
Khobalatte and Perthame [11]3).

3. INTERPOLATION AND LIMITATION ALGORITHMS

We now describe how we can replace the usual gradient
reconstruction by an interpolation + in-cell-limitation
algorithm. This gives the values U7 needed to complete the
description of the finite volume algorithm (6), (8). We also
prove that this procedure gives second-order accurate
values for U7 and nonnegative values of the density and
pressure.

3.1, Interpolation

Let us fix some vertex N7 of a cell C;. N7 is the center of
mass of three nodes, say X,, X;, X, of the triangulation,
to which are associated three dual cells C;, C;, C;. This
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makes the interpolation in principle easy (take 0=
LU+ U+ U}) and motivates us to use the dual grid
rather than the triangles directly as control volumes; then
the interpolation would be a problem.

There are, however, two difliculties. First the inter-
polation, as well as gradient reconstruction, should not
be performed on the conservative variables U] but on
characteristic variables. For gas dynamics, it seems to be
enough, and simpler, to work with

V= (p, (u)], (o), TT). (9)
There is no objection to performing the complete algorithm
on the characteristic variables. However, it would be much
more expensive because each interpolation should be per-
formed in the local characteristic variables of C;; they
depend upon /.

The second difficulty is that the values U] are the
averages of U over the cells C;. Thus, for U linear which is
enough for second-order accuracy, U7 are the values of U at
the center of mass of the cell C; which, in general, do not
coincide with X;. This leads us to introduce further nota-
tions and assumptions:

x,; denotes the center of mass of the cell C;,  (10)

we assume that, as well as X, x; allows us to
decompose the cell C, as the disjoint union of sub-
cells s7 obtained in joining x, to the centers of the
edges £7~ "% and E**'72 (see Fig. 2). (11)
(10) is needed for second-order accuracy and (11) will be
needed for our nonnegativity analysis. Whenever (11) is not
realized we will prefer to lose accuracy by taking x;, not the

F1G. 2. Subcells s¥ covering the cell C,associated to the node X, of the
triangulation; x; is the center of mass of C,.
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center of mass as required, but the closest possible to the
center of mass on the interval joining it to X, which satisfies
(t1).

Then, the three point interpolation is performed from
(Vi Vi, Vi) with the weights giving N* as a combination
of (x, x;, x,). This gives a value V* for (47 a7, 43, T*)
which is common to the three cells C,. C;, C,. Since this
interpolation rule is second-order accurate, these values of
V* (or more precisely the corresponding conservative quan-
tities U *) would give obviously a second-order accurate, but
centered, scheme in (6), (8).

Although we do not prove it, it has to be noted that
assumption (11} implies that N* still belongs to the triangle
(x;, x;, %), as well as to the triangle (X, X, X;). The
barycentric coordinates of N* with respect to (x;, x,, x;)arc
thus nonnegative, and our interpolation therefore gives
nonnegative values of 5* and T* in V* In practice, these
barycentric coordinates are stored for each triangle once
and for all at the beginning of the computation; they only
depend on the grid but do not change with time iterations.

3.2, In-Celi-Limitation by Conservation

At this level, we dispose of second-order accurate values
V* at the vertices N* with nonnegative densities and
pressures. In this subsection, we determine new values V*
using a limitation procedure within the cell C,, which meets
three requirements,

(i) the limited values Vi =(p?, (u,)7, {#2)7, T7) are
still second-order accurate,

(ii) the limited densities and pressures p*, T7 are still
nonnegative,

(iii)

the global conservation holds in the cell C,, ie.,

A
ICl U=} IstiUF,

a=1

(12)

where |s%| is the area of the subcell s71n (11) and U/ are the
limited conservative variables deduced from V%, This means
that we have really in mind that the representation of U” is
piecewise constant in the subcells s7. This is not a second-
order approximation of U/"(x}. But only the vertices N* are
important in (8) and there it is second-order accurate. We
base this limitation on conservation.

3.2.1. Conservation of Mass

Truncate together among the interpolated values g%, all
those that are cither larger or smaller than the known
average p, in the cell C, so as to impose conservation. This
means, set

H

p?=pf+,3+(ﬁ“-—pj.’)+—ﬁ_(ﬁ’—p,-)_, (13)

373

where 0<pB_, f, <1 are chosen with either #, =1 and
B_<lorf_=1and f, <1 by the relation

A Al

Y ol pi= Y Is¥ pt=|Cyl pt.

=1 x=1

(14)
This is achieved by the only possible choice

. =min (I,Z |57 (ﬁ’PT);/Z Is71 (ﬁ’—p?h), (15)

and we have wused the notation
x_ =max({0, —x).
Note that, in one dimension, ¢ takes only two values and

this is exactly the min-mod limitation.

x5 =max(0, x),

3.2.2. Conservation of Momentum

For u=u, or u, (and dropping the indices i and #), we set,
similarly,

W=u+f (G —uw), —p_("—u)_, (16)
with
o =min (1Y 19 576" =) [T 157 07—, ).
(17)

where p* is previously computed. And again we obtain the
conservation of momentum

Y 1s*| prur =3 |s%| pu=|C| pu. (18)
3.2.3. Conservation of Energy
Using p?, u$, «3 computed before, we set
T*=T—{y— D0 —u,)* + (43 —u)*12
+B (T =T +p_(T*-T), (19)

where

§, =min (:, ¥ 157 p(F~ TJ;/Z 15 p*(F — m)-

(20)
And conservation of energy now means
(ua)l (u1)2 sz

Sl ot ()=l E @)

as proved in
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ProposITION 1. The limitation (13), (15), (16), (17),
(19), (20) satisfies the conservation laws {14), (18), (21).

Proof of Proposition 1. We only prove the last conser-
vation because they are all obtained by the same argument.
Using the conservation of mass and momentum we have

Y s Ui+ ud?)
T = P 3 )
—u? — w3+ 2u 47+ 2uyul)
=Y (17— ) + (Ui —uz)%)
+3 s*plui+u3).
Therefore a
st} + a3y — 12+ T7)
=Y sl +w)y — 12+ Y 5T
=Y s [ +ud)y—1)/2+T]
=|C| E(y—1).

This proves the conservation of energy. i

Remark. The idea that the temperature T has to be
corrected by the value (y—1)iu|?/2 for positivity was
miroduced in [13] in 1D,

We now prove that this reconstruction gives nonnegative
values of p*, T

ProrosiTiON 2.
T*=0, and

If the interpolated values satisfy p* =0,

T,

-1 0% 2€
(y Wit —uy) ) (22)

(- @ —w)’ < T

for all 1 €x<ay,, then the corrected values satisfy p* =0,
T*=0.

Proof of Proposition 2. Given a, the limitations (13),
{16) yield

Since 5% and p are nonnegative this gives p* 2> 0. And (19)
immediately gives T2 0. |
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We conclude this section by proving that this limitation
preserves the second-order accuracy of the interpolation.

THEOREM 3. We assume (10), (11). If the interpolated
values V* are second-order accurate approximations of exact
values V(N™), then the corrected values are also second-order
accurate approximations of V(N*®).

COROLLARY 4. We assume (10), (11), then the fluxes in
(8} are second-order approximations of the exact fluxes (7).

Corollary 4 is an immediate consequence of Theorem 3
since in {6) the integration on the edges is performed with
second-order accuracy. As usual for finite volumes on
irregular meshes, it does not mean that the full scheme is
second-order accurate. This only holds for grids with special
symmetries. On numerical results, we, however, observe an
obvious improvement compared to the scheme with first-
order fluxes (which again does not mean first-order
truncating error).

Proof of Theorem 3. Let us concentrate on the density
variable, for instance {for the other variables, the proof goes
the same way). Our limitation aigorithm is Lipschitz con-
tinuous because it contains only Lipschitz continuous
algebraic operations except if 3, (p*—p),. =0 {or (..}_)
which means that no limitation is performed. Therefore it is
enough to check that if p(x) is a linear function and 5* are
the exact values p{ N *), then the limitation step gives indeed
5% = p(N*) {in other words it is exact for linear functions).
In that case we can write

px)=plx;)+Dp-(x—x;),  pi=plx;); (23)

thus we obtain

Al(i) Ali}

S Ui (pF—p)=Dp- Y I3 (N7—x)=0, (24)

2= =1

because we have for the dual grid of Section I

A
Y IsHHN = x)=0, (25)
x=1
as will be proved in Lemma 5 below. This means that
Y (p =) =Y IS (5% —pi)_. (26)

X

and thus 8, = f_ =, which proves that no limiting arises
for iinear functions. And the proof of Theorem 3 will be
completed by

Lemma 5. Under assumptions (10) and (11) the triangle-
based dual grid presented in Section 1 satisfies (25).

Proof of Lemtma 5. Let us introduce the mass centers y*
of the triangles K*= (x,, N%, N**') which are included in
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the cell C; by assumption (11). For a triangle the mass
center is given by the formula

V= NGNS, K =

K

xdx. (27)
Since, again by (11), C, is the disjoint union of the K*, we
find that

Cilx,= | xde=Y K" "

Ci

=YK (NF+H N3 +C N3,

and thus
ICil =Y |K7| (NT+N7T1)/2
=L IsEI N
because 2 |s% = |K*|+|K*"'|. §

4. BOLTZMANN SOLVER FOR GAS DYNAMICS
AND NONNEGATIVITY

The purpose of this section is to show how a kinetic solver
can be implemented together with the interpolation proce-
dure of SectionIl in order to keep the nonnegativity
property of the density and pressure obtained in Proposi-
tion 2. This leads us to derive a rigorous CFL condition. In
that sense the nonnegativity requirement is a stability condi-
tion. Also it implies, together with the conservation of mass
and energy, an L' bound on p, pT, and pu (since by
Cauchy-Schwarz inequality) ({!pu])* < ([ p)(J pu’)) and
thus it gives a nonlinear weak stability result in the sense of
a priori bounds on the solution.

For a rectangular mesh, the kinetic solver aliows to take
into account the corners effects which are important for first
order schemes (see [13]). This is no longer possible for
an unstructured grid and the numerical tests we have
performed on a rectangular grid show that, after our
second-order reconstruction, these corner effects play no
role.

In the first subsection below we describe the “simplified”
Boltzmann solver and then we prove, in Subsection 2, the
nonnegativity property for a classical CFL condition. Of
course, any other solver could be used if this nonnegativity
property is not required.

4.1. Description of the Riemann Solver

We now describe the solver, which means the
approximate flux F(n, U, W} in the scheme (8). We are
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going to use a Boltzmann solver (see Harten, Lax, and Van
Leer [10] for the terminology), which are flux splittings of
Van Leer type ([ 18]):

Fln, U, Wy=F*(n, U+ F~(n, W}, (28)
with
1
Prov=pf o mzé x(%‘)g )

——+4iT
3 +
and F~ is obtained integrating over the set {£-n<0}. Here

¢eR? and J is related to y in the pressure law (4) by

2 —
s=——7
2(y—1)

. (30)

The motivation for introducing these numerical fluxes is
that they correspond to a kinetic description of the gas.
Given the initial data

polx) ¢ —ug(x)
Jolx, &)= X ( )
’ Tolx) \/Tolx) (31)
golx, £) = ATy(x) folx, &),
the frec transport equations
a!f+u'v.rf=07 é‘,g-{-quxg:O, (32)

are related to the gas dynamics equation.
Indeed, the conservative variables and the fluxes in (1)
can be represented by

1 0
Uglx)= | & | folx 1+ 0| golx, &) |z (33)
e R! laz/z |

F(Uy)-n=F*(n, U+ F (n, U,) forevery neR% (34)

as soon as y satisfies

J (1, w,, wow, ) x(w) dw
RZ

=(1,0,8,) l<h I<2 {35)
Note that (34) is nothing but the consistancy of the numeri-
cal flux (28}, F(n, U, U)= F{U)-n, and that (33), (34) mean
that, during a small time step 4¢, the appropriate combina-
tions of the integrals of fand g, as in {33), are first-order (in

At} approximations of the gasdynamics equations (1}(4).
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Several choices of y are possible that meet the require-
ment (353). In [4, 14], the choice of “maxwellians” relevant
for Navier—Stokes flows, is used,

1 3
x(w)zﬁe_'"'i‘ﬂ. (36)

Another multidimensional choice of y is (I denotes the
indicator function)

x(w)=Z‘EH (vl <2). (37)

Among all the possible choices a more complicated y is
proposed in Khobalatte and Perthame [ 11] which satisfies
the maximum principle on the specific entropy.

But in order to obtain a cheaper solver, we take in prac-
tice

mwy=5TT 0wl <3 TTiwal<3),  (38)
where w,, w, are the coordinates such that # = (1, 0). Then,
the formula {29) is particularly simple to integrate. Note
that with the choice (38), the flux (as well as y) depends
explicitly on the normal. Thus, it is not guenuinely multi-
dimensional, while the fluxes deduced from (36) or (37) are,
in the sense that they satisfy

F(R-n,® U, AW)=R -F(n, U, W)

for all unitary transforms R, and with #-(p,u, T)=
{(p, R-u, T)

4.2, Stability Analysis

We now prove the nonnegativity of the densities and
pressures computed with the scheme (6), (8), together with
the kinetic flux (29), (37).

THEOREM 6. Consider the scheme (6), {8) with fluxes
defined by (28)-(30) and (38) and with a conservative predic-
tion of U?* satisfying p2=0, TT=0. It gives p7*' 20,
T+ 120 under the CFL condition

(luf] +/3T7) At |E** 17 <2|C,

Vi a, {40)

with the notations (5).

Proof of Theorem 6. We introduce the kinetic represen-
tation of the gas at time n 4¢ in the subcell 57,

P} {—u}
prro=tp(men =) @
T= T
§—u;
grO=i (=) @)
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These quantities are related to U7 by

1 0
. PR+ 0] g =) | =V, (43)
1€1%/2 1

which is a straightforward consequence of (33). Then, we
define the kinetic representation at time (» + 1) At by means
of a finite volume approximation of the transport equation
(32},

AG) (5%
G = L 5 UTT @+ 177@)

=1

A A8
+7 Y OIETT L oy

a=1

(PO + ()
—(&-niT) (fFO)

+TEND (44)
and the same formula, replacing f by g, allows us to define
g7 (&) In (13), j= j(i, a + 5) and § stand for the labels of
the subcells neighboring C; along the edge £** ' In fact
{45) amounts to writing the scheme (6), (8} with fluxes
given by (28), (29), (38). Indeed, if we define

p?+l
U?+]= (pu):_1+l
E?+‘l
1 0
= & Jrrmos|o) e a4
2172 1

then, the integration d¢ of (44) (with the weights 1, £, [£]%/2)
combined with the integration of the equation for g”*', as
in {33), yields exactly
Ald)
|Cl U =|C | UT+ 4t ) |EFTV2 g7 12 =0,

a=1

with the right fluxes ¢7* '/, This just follows from (43) and
{recall (14), (18), {21))

S Is:| Ui =1C| Ul

Now, thanks to (44), in order to prove the nonnegativity of
p*1 T7+! it remains to check that f7*' and g7*' are
nonnegative which follows from (44) as soon as

1

7l (46)

At .
N2 IE 2] (€ -nm ),
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for & in the support of y. Such £ satisfy, see (38),

& -nl < luf| + /3T,

and thus (46) is only the announced CFL condition, and
Theorem 6 is proved. ||

5. NUMERICAL RESULTS

We now present several numerical tests performed with
the above method processed on various triangle-based dual
grids (we always present the primal triangulation together
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with the numerical results). These tests were chosen to show
both the accuracy and the stability of the method. Except
for the global flow around an ellipse, these tests are all
standard and our results are comparable with the existing
literature.

5.1. 1D Problems Computed on a 2D Triangular Grid

These problems have the advantage of being very
standard and the results are casy to analyze. We have used
a random triangulation of a rectangle and we have com-
puted planar waves associated to two problems. Note that
the number of triangles we have amounts to 140 grid points
in the horizontal direction. Figure 3 shows the results

(a)
DENSITE YITESSE
1. 08 @ 84 7 \
a.71 J 2. 62 |
@ a2 | .31 |
a.13 b : : . 2. 6a : ; — \
2. 29 a 33 P67 1 o2 a. ¢ @ 33 Q. 67 1. 28
PRESSION ENERGIE
1. 00 2.87 7
B.7e | 2.5 | (
2. 43 ] 214 L
s} : : L7 1 - b,
3. 09 Q.33 a. 67 1.2a 2. 88 Q. 33 2. 67 1.¢0

FIG. 3.

(a) Random triangulation for the 11D problems, 4805 nodes, 9296 triangles. This amounts to 140 grid points in the horizontal direction.

(b) Sod shock tube, Comparison of the exact solution and the computed solution with the second-order scheme (in time and space).
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DENSETY
1. j T, ] I
X ;
b

[]
% [}

I

PRESSURE E

FIG. 4, Riemann problem 1-2-0-3 of [7] Comparison of the exact solution and the computed solution with the first- and second-order schemes
(in time and space).
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obtained for Sod’s shock tube. We compare the exact solu-
tion with the results of our schemes. The second-order
results are very superior to those obtained with the 1D first-
order scheme, even though they do not reach exactly the
accuracy of 1D second-order schemes. With this grid size,
we did not note any improvement when using a regular grid
deduced from a rectangular mesh.

We have chosen another 1D test problem proposed
recently in [7] for its difficulty because the density and
pressure vanish. It is a Riemann problem called 1-2-0-3 in
[7]. As predicted by the theory, our second-order 2D algo-
rithm did not generate any negative density or pressure. The
results are presented in Fig. 4; we compare the exact solu-
tion to the results obtained by the first-order and second-
order schemes. A very neat improvement can be seen
although this test is less selective for accuracy than Sod’s
tube.
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FIG. 5. (a) Regular grid, 1281 nodes, 2400 triangles. (b) Pressure
isolines, min=0.71, max =294, 25 isovalues. (c) Horizontal pressure
profile in the middle of the rectangle.
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5.2. 2D Problems

The first 2D test we present in Fig. 5 is the reflexion
problem. It is very standard and very accurate results can be
found in [2]. The constant states between the two shocks
are very well computed by our algorithm and very flat (we
present here the pressure but similar profiles are obtained
on the velocity or density). Also the shocks are rather good
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{three grid peints for the incident shock and five grid points
for the reflected shock ).

One of the interests of triangular-based grids is the
possibility to perform local adaptation of the grid, Our next
2D test problems are chosen to be very difficult from the
stability point of view because of hypersonic regimes and
locally distorted meshes. The first test is the double ellipse
problem and the resuits are shown in Fig. 6.

It is interesting to note the very good decay of the residue,
which shows that the iterations really lead to a stationary
solution and confirm that the interpolation limitation pro-
cedure is stable. For accuracy, many results for this test are
presented in the Hermes Workshop [ 5] and our results are
comparable to the best in [5].

To assert the nonnegativity property, we have chosen a
particularly difficult problem: a global flow around an
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FIG. 7. (a) Adapted grid, 4816 nodes, 9472 elements. (b) Log of the

density i1solines, min = —2.33, max = 0.99, 20 isovalues. (¢) Mach isolines,
min =0,04, max=25.0, 100 isovalues. (d) C, profile along the body.
{e) Convergence (in logs) history.
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ellipse with a Mach number of 23, an incidence of 30°, and
y=12 Many authors have reported negative pressures
behind the body. Our code gave a stationary positive solu-
tion, shown in Fig. 7. The same residue decay is observed in
Fig. 5.

Finally, to show again that our results are comparable to
other second-order schemes, we present in Fig. 8 a Mach 2
channel problem with a circular 4° bump. This test is also
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classical and recent results can be found in [17], for
instance. The shocks are rather well computed but it is
noticeable that there are absolutely no oscillations.

L
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